The joint optimisation of investments in capacity and repair capability of production and logistics systems at risk of being damaged is an important aspect of supply chain resilience that is not sufficiently addressed by state-of-the-art modelling approaches. Furthermore, logistical issues of procuring repair resources impact speed of recovery but are not considered in most existing models. This paper presents a novel multi-stage stochastic programming model that optimizes pre-disruption investment decisions, as well as post-disruption dynamic adjustment of supply chain operations and allocation of repair resources. A case study demonstrates how the method can quantify the effects of pooling repair resources.