Instructions:
• Set input values and target output
• Adjust learning rate to control step size
• Click "Step Optimization" to update weights
• Hover over table entries to highlight connections
• Watch loss decrease over time

Network: 2 inputs → 3 hidden (ReLU) → 1 output (linear)
Learning: MSE loss minimized via gradient descent
2.0000
Step: 0
MSE Loss Over Time
Input
1.00
0.50
Hidden
Output
0.00

Network Parameters

Weights

Input → Hidden Weights
From I1
From I2
Hidden → Output
→ H1: -1.049
→ H2: -0.618
→ H3: -0.647
→ H1: 0.648
→ H2: 0.834
→ H3: -0.395
H1 →: 0.248
H2 →: 0.625
H3 →: -0.595

Gradients

Input → Hidden Gradients
From I1
From I2
Hidden → Output
→ H1: 0.000
→ H2: 0.000
→ H3: 0.000
→ H1: 0.000
→ H2: 0.000
→ H3: 0.000
H1 →: 0.000
H2 →: 0.000
H3 →: 0.000