Instructions:
• Set input values and target output
• Adjust learning rate to control step size
• Click "Step Optimization" to update weights
• Hover over table entries to highlight connections
• Watch loss decrease over time

Network: 2 inputs → 3 hidden (ReLU) → 1 output (linear)
Learning: MSE loss minimized via gradient descent
1.8434
Step: 0
MSE Loss Over Time
Input
1.00
0.50
Hidden
Output
0.08

Network Parameters

Weights

Input → Hidden Weights
From I1
From I2
Hidden → Output
→ H1: -0.792
→ H2: 0.130
→ H3: 0.392
→ H1: 0.677
→ H2: -0.792
→ H3: 0.823
H1 →: 0.946
H2 →: 0.316
H3 →: 0.099

Gradients

Input → Hidden Gradients
From I1
From I2
Hidden → Output
→ H1: 0.000
→ H2: 0.000
→ H3: 0.000
→ H1: 0.000
→ H2: 0.000
→ H3: 0.000
H1 →: 0.000
H2 →: 0.000
H3 →: 0.000